Part Number Hot Search : 
MMBTA05 100000 UZ820 0512SH S100R UPC574 UFT7150 BT3904
Product Description
Full Text Search
 

To Download MCP6241T-EMC Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 MCP6241/1R/1U/2/4
50 A, 550 kHz Rail-to-Rail Op Amp
Features
* * * * * * Gain Bandwidth Product: 550 kHz (typical) Supply Current: IQ = 50 A (typical) Supply Voltage: 1.8V to 5.5V Rail-to-Rail Input/Output Extended Temperature Range: -40C to +125C Available in 5-pin SC-70 and SOT-23 packages
Description
The Microchip Technology Inc. MCP6241/1R/1U/2/4 operational amplifiers (op amps) provide wide bandwidth for the quiescent current. The MCP6241/1R/ 1U/2/4 has a 550 kHz gain bandwidth product and 68 (typical) phase margin. This family operates from a single supply voltage as low as 1.8V, while drawing 50 A (typical) quiescent current. In addition, the MCP6241/1R/1U/2/4 family supports rail-to-rail input and output swing, with a common mode input voltage range of VDD + 300 mV to VSS - 300 mV. These op amps are designed in one of Microchip's advanced CMOS processes.
Applications
* * * * * * Automotive Portable Equipment Photodiode (Transimpedance) Amplifier Analog Filters Notebooks and PDAs Battery-Powered Systems
Package Types
MCP6241 SOT-23-5
VOUT 1 VSS 2 VIN+ 3
- +
MCP6241 PDIP, SOIC, MSOP
5 VDD NC 1 VIN- 2 4 VIN- VIN+ 3 VSS 4 - + 8 NC 7 VDD 6 VOUT 5 NC
Design Aids
* * * * * SPICE Macro Models MindiTM Circuit Designer & Simulator Microchip Advanced Part Selector (MAPS) Analog Demonstration and Evaluation Boards Application Notes
MCP6241R SOT-23-5
VOUT 1 VDD 2 VIN+ 3
- +
MCP6242 PDIP, SOIC, MSOP
VOUTA 1 VINA_ 2 -+ +8 VDD 7 VOUTB 6 VINB_ 5 VINB+
5 VSS
Typical Application
RG2 VIN2 RG1 VIN1 VDD RX RY RZ - MCP6241 + VOUT RF
4 VIN-
VINA+ 3 VSS 4
MCP6241U SC-70-5, SOT-23-5
VIN+ 1 VSS 2 VIN- 3
+ -
MCP6244 PDIP, SOIC, TSSOP
VOUTA 1 VINA- 2 14 VOUTD - + + - 13 VIND- 12 VIND+ 11 VSS 10 VINC+ - + +- 9 V - INC 8 VOUTC
5 VDD
4 VOUT VINA+ 3
VDD 4
MCP6241 2x3 DFN*
NC 1 8 NC EP 9 7 VDD 6 VOUT 5 NC
VINB+ 5 VINB- 6 VOUTB 7
Summing Amplifier Circuit
VIN- 2 VIN+ 3 VSS 4
* Includes Exposed Thermal Pad (EP); see Table 3-1.
(c) 2008 Microchip Technology Inc.
DS21882D-page 1
MCP6241/1R/1U/2/4
NOTES:
DS21882D-page 2
(c) 2008 Microchip Technology Inc.
MCP6241/1R/1U/2/4
1.0 ELECTRICAL CHARACTERISTICS
Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. See Section 4.1.2 "Input Voltage and Current Limits".
Absolute Maximum Ratings
VDD - VSS ........................................................................7.0V Current at Analog Input Pins (VIN+, VIN-).....................2 mA Analog Inputs (VIN+, VIN-) ........ VSS - 1.0V to VDD + 1.0V All Other Inputs and Outputs ......... VSS - 0.3V to VDD + 0.3V Difference Input Voltage ...................................... |VDD - VSS| Output Short Circuit Current ................................ Continuous Current at Output and Supply Pins ............................30 mA Storage Temperature .................................. -65 C to +150C Maximum Junction Temperature (TJ)......................... .+150C ESD Protection On All Pins (HBM; MM) .............. 4 kV; 300V
DC ELECTRICAL CHARACTERISTICS
Electrical Characteristics: Unless otherwise indicated, TA = +25C, VDD = +1.8V to +5.5V, VSS = GND, VCM = VDD/2, RL = 100 k to VDD/2 and VOUT VDD/2. Parameters Input Offset Input Offset Voltage Extended Temperature Input Offset Drift with Temperature Power Supply Rejection Input Bias Current and Impedance Input Bias Current: At Temperature At Temperature Input Offset Current Common Mode Input Impedance Differential Input Impedance Common Mode Common Mode Input Range Common Mode Rejection Ratio Open-Loop Gain DC Open-Loop Gain (large signal) Output Maximum Output Voltage Swing Output Short-Circuit Current Power Supply Supply Voltage Quiescent Current per Amplifier Note 1: VDD IQ 1.8 30 -- 50 5.5 70 V A IO = 0, VCM = VDD - 0.5V VOL, VOH VSS + 35 ISC ISC -- -- -- 6 23 VDD - 35 -- -- mV mA mA RL = 10 k, 0.5V Input Overdrive VDD = 1.8V VDD = 5.5V AOL 90 110 -- dB VOUT = 0.3V to VDD - 0.3V, VCM = VSS VCMR CMRR VSS - 0.3 60 -- 75 VDD + 0.3 -- V dB VCM = -0.3V to 5.3V, VDD = 5V IB IB IB IOS ZCM ZDIFF -- -- -- -- -- -- 1.0 20 1100 1.0 1013||6 1013||3 -- -- -- -- -- -- pA pA pA pA ||pF ||pF TA = +85C TA = +125C VOS VOS VOS/TA PSRR -5.0 -7.0 -- -- -- -- 3.0 83 +5.0 +7.0 -- -- mV mV VCM = VSS TA= -40C to +125C, VCM = VSS (Note 1) Sym Min Typ Max Units Conditions
V/C TA= -40C to +125C, VCM = VSS dB VCM = VSS
The SC-70 package is only tested at +25C.
(c) 2008 Microchip Technology Inc.
DS21882D-page 3
MCP6241/1R/1U/2/4
AC ELECTRICAL CHARACTERISTICS
Electrical Characteristics: Unless otherwise indicated, TA = +25C, VDD = +1.8 to 5.5V, VSS = GND, VCM = VDD/2, VOUT VDD/2, RL = 10 k to VDD/2 and CL = 60 pF. Parameters AC Response Gain Bandwidth Product Phase Margin Slew Rate Noise Input Noise Voltage Input Noise Voltage Density Input Noise Current Density Eni eni ini -- -- -- 10 45 0.6 -- -- -- VP-P nV/Hz fA/Hz f = 0.1 Hz to 10 Hz f = 1 kHz f = 1 kHz GBWP PM SR -- -- -- 550 68 0.30 -- -- -- kHz V/s G = +1 V/V Sym Min Typ Max Units Conditions
TEMPERATURE CHARACTERISTICS
Electrical Characteristics: Unless otherwise indicated, VDD = +1.8V to +5.5V and VSS = GND. Parameters Temperature Ranges Extended Temperature Range Operating Temperature Range Storage Temperature Range Thermal Package Resistances Thermal Resistance, 5L-SC70 Thermal Resistance, 5L-SOT-23 Thermal Resistance, 8L-DFN (2x3) Thermal Resistance, 8L-MSOP Thermal Resistance, 8L-PDIP Thermal Resistance, 8L-SOIC Thermal Resistance, 14L-PDIP Thermal Resistance, 14L-SOIC Thermal Resistance, 14L-TSSOP Note: JA JA JA JA JA JA JA JA JA -- -- -- -- -- -- -- -- -- 331 256 84.5 206 85 163 70 120 100 -- -- -- -- -- -- -- -- -- C/W C/W C/W C/W C/W C/W C/W C/W C/W TA TA TA -40 -40 -65 -- -- -- +125 +125 +150 C C C (Note) Sym Min Typ Max Units Conditions
The internal Junction Temperature (TJ) must not exceed the Absolute Maximum specification of +150C.
1.1
Test Circuits
VDD RN 0.1 F 1 F VOUT CL VOUT CL RL VL VIN RG RF VL RL
The test circuits used for the DC and AC tests are shown in Figure 1-1 and Figure 1-2. The bypass capacitors are laid out according to the rules discussed in Section 4.6 "PCB Surface Leakage". VDD RN 0.1 F 1 F
VDD/2
MCP624X
VIN
MCP624X RF
VDD/2 RG
FIGURE 1-2: AC and DC Test Circuit for Most Inverting Gain Conditions.
FIGURE 1-1: AC and DC Test Circuit for Most Non-Inverting Gain Conditions.
DS21882D-page 4
(c) 2008 Microchip Technology Inc.
MCP6241/1R/1U/2/4
2.0
Note:
TYPICAL PERFORMANCE CURVES
The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.
Note: Unless otherwise indicated, TA = +25C, VDD = +1.8V to +5.5V, VSS = GND, VCM = VDD/2, VOUT VDD/2, RL = 100 k to VDD/2 and CL = 60 pF.
20% 18% 16% 14% 12% 10% 8% 6% 4% 2% 0% 90 CMRR, PSRR (dB) 85 80 75 70 -5 -4 -3 -2 -1 0 1 2 3 4 5 -50 Input Offset Voltage (mV)
Percentage of Occurrences
630 Samples VCM = VSS
PSRR (VCM = VSS)
CMRR (VCM = -0.3V to +5.3V, VDD = 5.0V) -25 0 25 50 75 Ambient Temperature (C) 100 125
FIGURE 2-1:
Input Offset Voltage.
FIGURE 2-4: Temperature.
120 Open-Loop Gain (dB)
CMRR, PSRR vs. Ambient
110 100 PSRR, CMRR (dB) 90 80 70 60 50 40 30 20 10 1.E+01 100 1.E+02 1k 10k 1.E+03 1.E+04 Frequency (Hz) 100k 1.E+05 PSRR+ PSRRCMRR
Gain
80 60 40 20 0 Phase
-60 -90 -120 -150 -180
-20 -210 0.1 1 10 100 1k 10k 1.E+ 1M 1.E+ 1.E- 1.E+ 1.E+ 1.E+ 1.E+ 1.E+ 100k 1.E+ 10M 01 00 01 Frequency (Hz) 05 06 07 02 03 04
FIGURE 2-2: Frequency.
25% 20% 15% 10% 5% 0% 0 6
PSRR, CMRR vs.
FIGURE 2-5: Frequency.
30% 25% 20% 15% 10% 5% 0% 0.2
Open-Loop Gain, Phase vs.
Percentage of Occurrences
180 Samples VCM = VDD/2 TA = +85C
Percentage of Occurrences
180 Samples VCM = VDD/2 TA = +125C
1.8
0.6
1.2
0.0
0.4
0.8
1.0
1.4
1.6
Input Bias Current (pA)
Input Bias Current (nA)
FIGURE 2-3:
Input Bias Current at +85C.
FIGURE 2-6: +125C.
Input Bias Current at
(c) 2008 Microchip Technology Inc.
DS21882D-page 5
2.0
12
18
24
30
36
42
Open-Loop Phase ()
100
RL = 10.0 k VCM = VDD/2
0 -30
MCP6241/1R/1U/2/4
Note: Unless otherwise indicated, TA = +25C, VDD = +1.8V to +5.5V, VSS = GND, VCM = VDD/2, VOUT VDD/2, RL = 100 k to VDD/2 and CL = 60 pF.
10,000 20% 18% 16% 14% 12% 10% 8% 6% 4% 2% 0%
Input Noise Voltage Density (nV/Hz)
Percentage of Occurrences
1,000
628 Samples VCM = VSS TA = -40C to +125C
100
10 0.1 1 10 100 1k 10k 100k 1.E-01 1.E+0 1.E+0 1.E+0 1.E+0 1.E+0 1.E+0 Frequency (Hz) 0 1 2 3 4 5
-6
-12
-10
-4
-8
-2
0
2
4
6
8
10
Input Offset Voltage Drift (V/C)
FIGURE 2-7: vs. Frequency.
300 Input Offset Voltage (V) 200 100 0 -100 -200 -300 0.2 TA = -40C TA = +25C TA = +85C TA = +125C
Input Noise Voltage Density
FIGURE 2-10:
Input Offset Voltage Drift.
700 Input Offset Voltage (V) VDD = 1.8V 650 600 550 500 450 400 350 300 VDD = 1.8V
VCM = VSS
VDD = 5.5V
1.2
1.8
-0.2
-0.4
2.2
0.0
0.4
0.6
0.8
1.0
1.4
1.6
2.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 Output Voltage (V)
Common Mode Input Voltage (V)
FIGURE 2-8: Input Offset Voltage vs. Common Mode Input Voltage at VDD = 1.8V.
400 Input Offset Voltage (V) 300 200 100 0 -100 -200 0.5 2.0 3.0 4.5 -0.5 6.0 0.0 1.0 1.5 2.5 3.5 4.0 5.0 5.5 Common Mode Input Voltage (V) TA = -40C TA = +25C TA = +85C TA = +125C
FIGURE 2-11: Output Voltage.
35 30 25 20 15 10 5 0 -5 -10 -15 -20 -25 -30 -35
Input Offset Voltage vs.
VDD = 5.5V
Short Circuit Current (mA)
+ISC
TA = +125C TA = +85C TA = +25C TA = -40C
-ISC 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 Power Supply Voltage (V)
FIGURE 2-9: Input Offset Voltage vs. Common Mode Input Voltage at VDD = 5.5V.
FIGURE 2-12: Output Short-Circuit Current vs. Ambient Temperature.
DS21882D-page 6
(c) 2008 Microchip Technology Inc.
12
MCP6241/1R/1U/2/4
Note: Unless otherwise indicated, TA = +25C, VDD = +1.8V to +5.5V, VSS = GND, VCM = VDD/2, VOUT VDD/2, RL = 100 k to VDD/2 and CL = 60 pF.
0.50 0.45 Slew Rate (V/s) 0.40 0.35 0.30 0.25 0.20 0.15 0.10 Rising Edge -50 -25 0 25 50 75 100 Ambient Temperature (C) 125 Time (1 s/div) VDD = 1.8V Falling Edge VDD = 5.5V Output Voltage (10 mV/div)
G = +1 V/V RL = 10 k
FIGURE 2-13: Temperature.
1,000 Output Voltage Headroom (mV)
Slew Rate vs. Ambient
FIGURE 2-16: Pulse Response.
5.0 Output Voltage (V) 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0
Small-Signal, Non-Inverting
VDD = 5.0V G = +1 V/V
100
VDD - VOH VOL - VSS
10
1 10 1.E-02
100 1m 1.E-01 1.E+00 Output Current Magnitude (A)
10m 1.E+01
Time (10 s/div)
FIGURE 2-14: Output Voltage Headroom vs. Output Current Magnitude.
10 Output Voltage Swing (VP-P ) VDD = 5.5V VDD = 1.8V
FIGURE 2-17: Pulse Response.
80 70 Quiescent Current per Amplifier (A) 60 50 40 30 20 10 0
Large-Signal, Non-Inverting
VCM = 0.9VDD
1
TA = TA = TA = TA =
+125C +85C +25C -40C
0.1 1k 1.E+03
10k 100k 1.E+04 1.E+05 Frequency (Hz)
1M 1.E+06
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 Power Supply Voltage (V)
FIGURE 2-15: Maximum Output Voltage Swing vs. Frequency.
FIGURE 2-18: Quiescent Current vs. Power Supply Voltage.
(c) 2008 Microchip Technology Inc.
DS21882D-page 7
MCP6241/1R/1U/2/4
Note: Unless otherwise indicated, TA = +25C, VDD = +1.8V to +5.5V, VSS = GND, VCM = VDD/2, VOUT VDD/2, RL = 100 k to VDD/2 and CL = 60 pF.
1.E-02 10m 1.E-03 1m 1.E-04 100 1.E-05 10 1.E-06 1 100n 1.E-07 10n 1.E-08 1n 1.E-09 100p 1.E-10 10p 1.E-11 1p 1.E-12
Input Current Magnitude (A)
+125C +85C +25C -40C
-1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 Input Voltage (V)
FIGURE 2-19: Measured Input Current vs. Input Voltage (below VSS).
DS21882D-page 8
(c) 2008 Microchip Technology Inc.
MCP6241/1R/1U/2/4
3.0 PIN DESCRIPTIONS
Descriptions of the pins are listed in Table 3-1 (single op amps) and Table 3-2 (dual and quad op amps).
TABLE 3-1:
PIN FUNCTION TABLE FOR SINGLE OP AMPS
MCP6241 MCP6241R SOT-23-5 1 4 3 5 2 -- -- SOT-23-5 1 4 3 2 5 -- -- MCP6241U SOT-23-5, SC-70 4 3 1 5 2 -- -- Symbol VOUT VIN- VIN+ VDD VSS NC EP Description Analog Output Inverting Input Non-inverting Input Positive Power Supply Negative Power Supply No Internal Connection
Exposed Thermal Pad (EP); must be connected to VSS.
DFN 6 2 3 7 4 1, 5, 8 9
MSOP, PDIP, SOIC 6 2 3 7 4 1, 5, 8 --
TABLE 3-2:
MCP6242
PIN FUNCTION TABLE FOR DUAL AND QUAD OP AMPS
MCP6244 PDIP, SOIC, TSSOP 1 2 3 4 5 6 7 8 9 10 11 12 13 14 VOUTA VINA- VINA+ VDD VINB+ VINB- VOUTB VOUTC VINC- VINC+ VSS VIND+ VIND- VOUTD Analog Output (op amp A) Inverting Input (op amp A) Non-inverting Input (op amp A) Positive Power Supply Non-inverting Input (op amp B) Inverting Input (op amp B) Analog Output (op amp B) Analog Output (op amp C) Inverting Input (op amp C) Non-inverting Input (op amp C) Negative Power Supply Non-inverting Input (op amp D) Inverting Input (op amp D) Analog Output (op amp D) Typically, these parts are used in a single (positive) supply configuration. In this case, VSS is connected to ground and VDD is connected to the supply. VDD will need bypass capacitors. Symbol Description
MSOP, PDIP, SOIC 1 2 3 8 5 6 7 -- -- -- 4 -- -- --
3.1
Analog Outputs
The output pins are low-impedance voltage sources.
3.2
Analog Inputs
The non-inverting and inverting inputs are highimpedance CMOS inputs with low bias currents.
3.4
Exposed Thermal Pad (EP)
3.3
Power Supply (VSS and VDD)
The positive power supply (VDD) is 1.8V to 5.5V higher than the negative power supply (VSS). For normal operation, the other pins are between VSS and VDD.
There is an internal electrical connection between the Exposed Thermal Pad (EP) and the VSS pin; they must be connected to the same potential on the Printed Circuit Board (PCB).
(c) 2008 Microchip Technology Inc.
DS21882D-page 9
MCP6241/1R/1U/2/4
NOTES:
DS21882D-page 10
(c) 2008 Microchip Technology Inc.
MCP6241/1R/1U/2/4
4.0 APPLICATION INFORMATION
VDD Bond Pad The MCP6241/1R/1U/2/4 family of op amps is manufactured using Microchip's state-of-the-art CMOS process and is specifically designed for low-power and general-purpose applications. The low supply voltage, low quiescent current and wide bandwidth makes the MCP6241/1R/1U/2/4 ideal for battery-powered applications.
VIN+ Bond Pad
Input Stage
Bond V - IN Pad
4.1
4.1.1
Rail-to-Rail Inputs
PHASE REVERSAL
VSS Bond Pad
The MCP6241/1R/1U/2/4 op amp is designed to prevent phase reversal when the input pins exceed the supply voltages. Figure 4-1 shows the input voltage exceeding the supply voltage without any phase reversal.
6 Input, Output Voltage (V) 5 4 3 2 1 0 -1 Time (1 ms/div) VIN VOUT
FIGURE 4-2: Structures.
Simplified Analog Input ESD
VDD = 5.0V G = +2 V/V
In order to prevent damage and/or improper operation of these op amps, the circuit they are in must limit the currents and voltages at the VIN+ and VIN- pins (see Absolute Maximum Ratings at the beginning of Section 1.0 "Electrical Characteristics"). Figure 4-3 shows the recommended approach to protecting these inputs. The internal ESD diodes prevent the input pins (VIN+ and VIN-) from going too far below ground, and the resistors R1 and R2 limit the possible current drawn out of the input pins. Diodes D1 and D2 prevent the input pins (VIN+ and VIN-) from going too far above VDD, and dump any currents onto VDD. When implemented as shown, resistors R1 and R2 also limit the current through D1 and D2. VDD D1 V1 R1 V2 R2 R3 VSS - (minimum expected V1) 2 mA VSS - (minimum expected V2) R2 > 2 mA R1 > MCP624X D2
FIGURE 4-1: The MCP6241/1R/1U/2/4 Show No Phase Reversal. 4.1.2 INPUT VOLTAGE AND CURRENT LIMITS
The ESD protection on the inputs can be depicted as shown in Figure 4-2. This structure was chosen to protect the input transistors, and to minimize input bias current (IB). The input ESD diodes clamp the inputs when they try to go more than one diode drop below VSS. They also clamp any voltages that go too far above VDD; their breakdown voltage is high enough to allow normal operation, and low enough to bypass quick ESD events within the specified limits.
FIGURE 4-3: Inputs.
Protecting the Analog
It is also possible to connect the diodes to the left of resistors R1 and R2. In this case, current through the diodes D1 and D2 needs to be limited by some other mechanism. The resistors then serve as in-rush current limiters; the DC current into the input pins (VIN+ and VIN-) should be very small.
(c) 2008 Microchip Technology Inc.
DS21882D-page 11
MCP6241/1R/1U/2/4
Recommended R ISO ()
A significant amount of current can flow out of the inputs when the common mode voltage (VCM) is below ground (VSS); see Figure 2-19. Applications that are high impedance may need to limit the useable voltage range.
1.E+04 10k
4.1.3
NORMAL OPERATION
1.E+03 1k
The input stage of the MCP6241/1R/1U/2/4 op amps use two differential CMOS input stages in parallel. One operates at low common mode input voltage (VCM), while the other operates at high VCM. WIth this topology, the device operates with VCM up to 0.3V above VDD and 0.3V below VSS.
100 1.E+02 10p 100p 1n 10n 1.E+01 1.E+02 1.E+03 1.E+04 Normalized Load Capacitance; CL/GN (F)
GN = +1 V/V GN +2 V/V
4.2
Rail-to-Rail Output
FIGURE 4-5: Recommended RISO Values for Capacitive Loads.
After selecting RISO for your circuit, double-check the resulting frequency response peaking and step response overshoot. Evaluation on the bench and simulations with the MCP6241/1R/1U/2/4 SPICE macro model are very helpful. Modify RISO's value until the response is reasonable.
The output voltage range of the MCP6241/1R/1U/2/4 op amps is VDD - 35 mV (maximum) and VSS + 35 mV (minimum) when RL = 10 k is connected to VDD/2 and VDD = 5.5V. Refer to Figure 2-14 for more information.
4.3
Capacitive Loads
Driving large capacitive loads can cause stability problems for voltage-feedback op amps. As the load capacitance increases, the feedback loop's phase margin decreases and the closed-loop bandwidth is reduced. This produces gain peaking in the frequency response, with overshoot and ringing in the step response. A unity-gain buffer (G = +1) is the most sensitive to capacitive loads, but all gains show the same general behavior. When driving large capacitive loads with these op amps (e.g., > 70 pF when G = +1), a small series resistor at the output (RISO in Figure 4-4) improves the feedback loop's phase margin (stability) by making the output load resistive at higher frequencies. The bandwidth will be generally lower than the bandwidth with no capacitive load.
4.4
Supply Bypass
With this op amp, the power supply pin (VDD for single-supply) should have a local bypass capacitor (i.e., 0.01 F to 0.1 F) within 2 mm for good highfrequency performance. It can use a bulk capacitor (i.e., 1 F or larger) within 100 mm to provide large, slow currents. This bulk capacitor can be shared with other nearby analog parts.
4.5
Unused Op Amps
- VIN MCP624X +
RISO VOUT CL
An unused op amp in a quad package (MCP6244) should be configured as shown in Figure 4-6. Both circuits prevent the output from toggling and causing crosstalk. Circuit A can use any reference voltage between the supplies, provides a buffered DC voltage, and minimizes the supply current draw of the unused op amp. Circuit B minimizes the number of components, but may draw a little more supply current for the unused op amp. 1/4 MCP6244 (A) VDD 1/4 MCP6244 (B) VDD VDD VREF
FIGURE 4-4: Output Resistor, RISO stabilizes large capacitive loads.
Figure 4-5 gives recommended RISO values for different capacitive loads and gains. The x-axis is the normalized load capacitance (CL/GN), where GN is the circuit's noise gain. For non-inverting gains, GN and the signal gain are equal. For inverting gains, GN is 1 + |Signal Gain| (e.g., -1 V/V gives GN = +2 V/V).
R1 R2
R2 V REF = V DD -----------------R1 + R2
FIGURE 4-6:
Unused Op Amps.
DS21882D-page 12
(c) 2008 Microchip Technology Inc.
MCP6241/1R/1U/2/4
4.6 PCB Surface Leakage 4.7
4.7.1
Application Circuits
MATCHING THE IMPEDANCE AT THE INPUTS
In applications where low input bias current is critical, PCB (printed circuit board) surface leakage effects need to be considered. Surface leakage is caused by humidity, dust or other contamination on the board. Under low humidity conditions, a typical resistance between nearby traces is 1012. A 5V difference would cause 5 pA of current to flow, which is greater than the MCP6241/1R/1U/2/4 family's bias current at 25C (1 pA, typical). The easiest way to reduce surface leakage is to use a guard ring around sensitive pins (or traces). The guard ring is biased at the same voltage as the sensitive pin. An example of this type of layout is shown in Figure 4-7. VINVIN+ VSS
To minimize the effect of offset voltage in an amplifier circuit, the impedances at the inverting and noninverting inputs need to be matched. This is done by choosing the circuit resistor values so that the total resistance at each input is the same. Figure 4-8 shows a summing amplifier circuit.
RG2 VIN2 RG1 VIN1 VDD RX RY RZ - MCP6241 + VOUT RF
Guard Ring
FIGURE 4-8:
Summing Amplifier Circuit.
FIGURE 4-7: for Inverting Gain.
1.
Example Guard Ring Layout
2.
Non-inverting Gain and Unity-Gain Buffer: a. Connect the non-inverting pin (VIN+) to the input with a wire that does not touch the PCB surface. b. Connect the guard ring to the inverting input pin (VIN-). This biases the guard ring to the common mode input voltage. Inverting Gain and Transimpedance Amplifiers (convert current to voltage, such as photo detectors): a. Connect the guard ring to the non-inverting input pin (VIN+). This biases the guard ring to the same reference voltage as the op amp (e.g., VDD/2 or ground). b. Connect the inverting pin (VIN-) to the input with a wire that does not touch the PCB surface.
To match the inputs, set all voltage sources to ground and calculate the total resistance at the input nodes. In this summing amplifier circuit, the resistance at the inverting input is calculated by setting VIN1, VIN2 and VOUT to ground. In this case, RG1, RG2 and RF are in parallel. The total resistance at the inverting input is: 1 R VIN - = -------------------------------------------1 11 --------- + --------- + ----- R R R
G1 G2 F
Where: RVIN- = total resistance at the inverting input At the non-inverting input, VDD is the only voltage source. When VDD is set to ground, both RX and RY are in parallel. The total resistance at the non-inverting input is: 1 R VIN + = ------------------------ + R Z 1- 1 ----- + ----- R X RY Where: RVIN+ = total resistance at the inverting input To minimize offset voltage and increase circuit accuracy, the resistor values need to meet the condition: R VIN + = R VIN -
(c) 2008 Microchip Technology Inc.
DS21882D-page 13
MCP6241/1R/1U/2/4
4.7.2 COMPENSATING FOR THE PARASITIC CAPACITANCE
In analog circuit design, the PCB parasitic capacitance can compromise the circuit behavior; Figure 4-9 shows a typical scenario. If the input of an amplifier sees parasitic capacitance of several picofarad (CPARA, which includes the common mode capacitance of 6 pF, typical) and large RF and RG , the frequency response of the circuit will include a zero. This parasitic zero introduces gain peaking and can cause circuit instability.
VAC
+ MCP624X - RG RF VOUT
VDC
CPARA
CF
RG C F = C PARA * -----RF
FIGURE 4-9: Effect of Parasitic Capacitance at the Input.
One solution is to use smaller resistor values to push the zero to a higher frequency. Another solution is to compensate by introducing a pole at the point at which the zero occurs. This can be done by adding CF in parallel with the feedback resistor (RF). CF needs to be selected so that the ratio CPARA:CF is equal to the ratio of RF:RG .
DS21882D-page 14
(c) 2008 Microchip Technology Inc.
MCP6241/1R/1U/2/4
5.0 DESIGN AIDS
5.4
Microchip provides the basic design tools needed for the MCP6241/1R/1U/2/4 family of op amps.
Analog Demonstration and Evaluation Boards
5.1
SPICE Macro Model
The latest SPICE macro model for the MCP6241/1R/ 1U/2/4 op amps is available on the Microchip web site at www.microchip.com. This model is intended to be an initial design tool that works well in the op amp's linear region of operation over the temperature range. See the model file for information on its capabilities. Bench testing is a very important part of any design and cannot be replaced with simulations. Also, simulation results using this macro model need to be validated by comparing them to the data sheet specifications and characteristic curves.
Microchip offers a broad spectrum of Analog Demonstration and Evaluation Boards that are designed to help you achieve faster time to market. For a complete listing of these boards and their corresponding user's guides and technical information, visit the Microchip web site at www.microchip.com/analogtools. Two of our boards that are especially useful are: * P/N SOIC8EV: 8-Pin SOIC/MSOP/TSSOP/DIP Evaluation Board * P/N SOIC14EV: 14-Pin SOIC/TSSOP/DIP Evaluation Board
5.5
Application Notes
5.2
MindiTM Circuit Designer & Simulator
The following Microchip Application Notes are available on the Microchip web site at www.microchip. com/ appnotes and are recommended as supplemental reference resources. ADN003: "Select the Right Operational Amplifier for your Filtering Circuits", DS21821 AN722: "Operational Amplifier Topologies and DC Specifications", DS00722 AN723: "Operational Amplifier AC Specifications and Applications", DS00723 AN884: "Driving Capacitive Loads With Op Amps", DS00884 AN990: "Analog Sensor Conditioning Circuits - An Overview", DS00990 These application notes and others are listed in the design guide: "Signal Chain Design Guide", DS21825
Microchip's MindiTM Circuit Designer & Simulator aids in the design of various circuits useful for active filter, amplifier and power-management applications. It is a free online circuit designer & simulator available from the Microchip web site at www.microchip.com/mindi. This interactive circuit designer & simulator enables designers to quickly generate circuit diagrams, simulate circuits. Circuits developed using the Mindi Circuit Designer & Simulator can be downloaded to a personal computer or workstation.
5.3
Microchip Advanced Part Selector (MAPS)
MAPS is a software tool that helps semiconductor professionals efficiently identify Microchip devices that fit a particular design requirement. Available at no cost from the Microchip web site at www.microchip.com/ maps, the MAPS is an overall selection tool for Microchip's product portfolio that includes Analog, Memory, MCUs and DSCs. Using this tool you can define a filter to sort features for a parametric search of devices and export side-by-side technical comparison reports. Helpful links are also provided for Data sheets, Purchase, and Sampling of Microchip parts.
(c) 2008 Microchip Technology Inc.
DS21882D-page 15
MCP6241/1R/1U/2/4
NOTES:
DS21882D-page 16
(c) 2008 Microchip Technology Inc.
MCP6241/1R/1U/2/4
6.0
6.1
PACKAGING INFORMATION
Package Marking Information
5-Lead SC-70 (MCP6241U Only) Example:
XXNN
AT25
5-Lead SOT-23 (MCP6241, MCP6241R, MCP6241U)
5 4
Example:
5 4
Device MCP6241 MCP6241R MCP6241U BRNN BSNN
Code BQNN
XXNN
1 2 3
BQ25
1 2 3
Note:
Applies to 5-Lead SOT-23.
8-Lead DFN (2x3) (MCP6241 Only)
Example:
XXX YWW NN
AER 834 25
8-Lead MSOP XXXXXX YWWNNN
Example: 6242E 834256
8-Lead PDIP (300 mil) XXXXXXXX XXXXXNNN YYWW
Example: MCP6242 E/P256 0818 MCP6242 E/P e3 ^^256 0834
OR
Legend: XX...X Y YY WW NNN
e3
* Note:
Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week `01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ( e3 ) can be found on the outer packaging for this package.
In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.
(c) 2008 Microchip Technology Inc.
DS21882D-page 17
MCP6241/1R/1U/2/4
Package Marking Information (Continued)
8-Lead SOIC (150 mil) XXXXXXXX XXXXYYWW NNN Example: MCP6242 E/SN0818 256 MCP6242E e3 SN^^ 0834 256
OR
14-Lead PDIP (300 mil) (MCP6244)
Example:
XXXXXXXXXXXXXX XXXXXXXXXXXXXX YYWWNNN
MCP6244 e3 E/P^^ 0546256
14-Lead SOIC (150 mil) (MCP6244)
Example:
XXXXXXXXXX XXXXXXXXXX YYWWNNN
MCP6244 e3 E/SL^^ 0546256
14-Lead TSSOP (MCP6244)
Example:
XXXXXXXX YYWW NNN
6244E 0546 256
DS21882D-page 18
(c) 2008 Microchip Technology Inc.
MCP6241/1R/1U/2/4
/HDG 3ODVWLF 6PDOO 2XWOLQH 7UDQVLVWRU /7 >6&@
1RWH )RU WKH PRVW FXUUHQW SDFNDJH GUDZLQJV SOHDVH VHH WKH 0LFURFKLS 3DFNDJLQJ 6SHFLILFDWLRQ ORFDWHG DW KWWSZZZPLFURFKLSFRPSDFNDJLQJ
D b 3 2 1
E1 E
4 e e
5
A
A2
c
A1
8QLWV 'LPHQVLRQ /LPLWV 1XPEHU RI 3LQV 3LWFK 2YHUDOO +HLJKW 0ROGHG 3DFNDJH 7KLFNQHVV 6WDQGRII 2YHUDOO :LGWK 0ROGHG 3DFNDJH :LGWK 2YHUDOO /HQJWK )RRW /HQJWK /HDG 7KLFNQHVV /HDG :LGWK 1 H $ $ $ ( ( ' / F E 0,1 0,//,0(7(56 120 %6& 0$;
L
1RWHV 'LPHQVLRQV ' DQG ( GR QRW LQFOXGH PROG IODVK RU SURWUXVLRQV 0ROG IODVK RU SURWUXVLRQV VKDOO QRW H[FHHG PP SHU VLGH 'LPHQVLRQLQJ DQG WROHUDQFLQJ SHU $60( <0 %6& %DVLF 'LPHQVLRQ 7KHRUHWLFDOO\ H[DFW YDOXH VKRZQ ZLWKRXW WROHUDQFHV 0LFURFKLS 7HFKQRORJ\ 'UDZLQJ &%
(c) 2008 Microchip Technology Inc.
DS21882D-page 19
MCP6241/1R/1U/2/4
1RWH
)RU WKH PRVW FXUUHQW SDFNDJH GUDZLQJV SOHDVH VHH WKH 0LFURFKLS 3DFNDJLQJ 6SHFLILFDWLRQ ORFDWHG DW KWWSZZZPLFURFKLSFRPSDFNDJLQJ
DS21882D-page 20
(c) 2008 Microchip Technology Inc.
MCP6241/1R/1U/2/4
/HDG 3ODVWLF 6PDOO 2XWOLQH 7UDQVLVWRU 27 >627@
1RWH )RU WKH PRVW FXUUHQW SDFNDJH GUDZLQJV SOHDVH VHH WKH 0LFURFKLS 3DFNDJLQJ 6SHFLILFDWLRQ ORFDWHG DW KWWSZZZPLFURFKLSFRPSDFNDJLQJ
b
N
E E1
1 e
2
3
e1 D
A
A2
c
A1
L L1
8QLWV 'LPHQVLRQ /LPLWV 1XPEHU RI 3LQV /HDG 3LWFK 2XWVLGH /HDG 3LWFK 2YHUDOO +HLJKW 0ROGHG 3DFNDJH 7KLFNQHVV 6WDQGRII 2YHUDOO :LGWK 0ROGHG 3DFNDJH :LGWK 2YHUDOO /HQJWK )RRW /HQJWK )RRWSULQW )RRW $QJOH /HDG 7KLFNQHVV 1 H H $ $ $ ( ( ' / / I F 0,1 0,//,0(7(56 120 %6& %6& 0$;
/HDG :LGWK E 1RWHV 'LPHQVLRQV ' DQG ( GR QRW LQFOXGH PROG IODVK RU SURWUXVLRQV 0ROG IODVK RU SURWUXVLRQV VKDOO QRW H[FHHG PP SHU VLGH 'LPHQVLRQLQJ DQG WROHUDQFLQJ SHU $60( <0 %6& %DVLF 'LPHQVLRQ 7KHRUHWLFDOO\ H[DFW YDOXH VKRZQ ZLWKRXW WROHUDQFHV 0LFURFKLS 7HFKQRORJ\ 'UDZLQJ &%
(c) 2008 Microchip Technology Inc.
DS21882D-page 21
MCP6241/1R/1U/2/4
/HDG 3ODVWLF 'XDO )ODW 1R /HDG 3DFNDJH 0& [[ PP %RG\ >')1@
1RWH )RU WKH PRVW FXUUHQW SDFNDJH GUDZLQJV SOHDVH VHH WKH 0LFURFKLS 3DFNDJLQJ 6SHFLILFDWLRQ ORFDWHG DW KWWSZZZPLFURFKLSFRPSDFNDJLQJ
D N L e N
b
K E E2
EXPOSED PAD NOTE 1 1 2 D2 TOP VIEW BOTTOM VIEW 2 1 NOTE 1
A
A3
A1
NOTE 2
8QLWV 'LPHQVLRQ /LPLWV 0,1 0,//,0(7(56 120 %6& 5() %6& %6& 0$;
1XPEHU RI 3LQV 3LWFK 2YHUDOO +HLJKW 6WDQGRII &RQWDFW 7KLFNQHVV 2YHUDOO /HQJWK 2YHUDOO :LGWK ([SRVHG 3DG /HQJWK ([SRVHG 3DG :LGWK &RQWDFW :LGWK &RQWDFW /HQJWK &RQWDFWWR([SRVHG 3DG
1 H $ $ $ ' ( ' ( E / .
1RWHV 3LQ YLVXDO LQGH[ IHDWXUH PD\ YDU\ EXW PXVW EH ORFDWHG ZLWKLQ WKH KDWFKHG DUHD 3DFNDJH PD\ KDYH RQH RU PRUH H[SRVHG WLH EDUV DW HQGV 3DFNDJH LV VDZ VLQJXODWHG 'LPHQVLRQLQJ DQG WROHUDQFLQJ SHU $60( <0 %6& %DVLF 'LPHQVLRQ 7KHRUHWLFDOO\ H[DFW YDOXH VKRZQ ZLWKRXW WROHUDQFHV 5() 5HIHUHQFH 'LPHQVLRQ XVXDOO\ ZLWKRXW WROHUDQFH IRU LQIRUPDWLRQ SXUSRVHV RQO\
0LFURFKLS 7HFKQRORJ\ 'UDZLQJ &&
DS21882D-page 22
(c) 2008 Microchip Technology Inc.
MCP6241/1R/1U/2/4
/HDG 3ODVWLF 'XDO )ODW 1R /HDG 3DFNDJH 0& [[ PP %RG\ >')1@
1RWH )RU WKH PRVW FXUUHQW SDFNDJH GUDZLQJV SOHDVH VHH WKH 0LFURFKLS 3DFNDJLQJ 6SHFLILFDWLRQ ORFDWHG DW KWWSZZZPLFURFKLSFRPSDFNDJLQJ
(c) 2008 Microchip Technology Inc.
DS21882D-page 23
MCP6241/1R/1U/2/4
/HDG 3ODVWLF 0LFUR 6PDOO 2XWOLQH 3DFNDJH 06 >0623@
1RWH )RU WKH PRVW FXUUHQW SDFNDJH GUDZLQJV SOHDVH VHH WKH 0LFURFKLS 3DFNDJLQJ 6SHFLILFDWLRQ ORFDWHG DW KWWSZZZPLFURFKLSFRPSDFNDJLQJ
D N
E E1
NOTE 1 1 2 b A A2 c
e
A1
8QLWV 'LPHQVLRQ /LPLWV 1XPEHU RI 3LQV 3LWFK 2YHUDOO +HLJKW 0ROGHG 3DFNDJH 7KLFNQHVV 6WDQGRII 2YHUDOO :LGWK 0ROGHG 3DFNDJH :LGWK 2YHUDOO /HQJWK )RRW /HQJWK )RRWSULQW )RRW $QJOH /HDG 7KLFNQHVV 1 H $ $ $ ( ( ' / / I F
L1
0,//,0(7(56 0,1 120 %6& %6& %6& %6& 5() 0$;
L
/HDG :LGWK E 1RWHV 3LQ YLVXDO LQGH[ IHDWXUH PD\ YDU\ EXW PXVW EH ORFDWHG ZLWKLQ WKH KDWFKHG DUHD 'LPHQVLRQV ' DQG ( GR QRW LQFOXGH PROG IODVK RU SURWUXVLRQV 0ROG IODVK RU SURWUXVLRQV VKDOO QRW H[FHHG PP SHU VLGH 'LPHQVLRQLQJ DQG WROHUDQFLQJ SHU $60( <0 %6& %DVLF 'LPHQVLRQ 7KHRUHWLFDOO\ H[DFW YDOXH VKRZQ ZLWKRXW WROHUDQFHV 5() 5HIHUHQFH 'LPHQVLRQ XVXDOO\ ZLWKRXW WROHUDQFH IRU LQIRUPDWLRQ SXUSRVHV RQO\ 0LFURFKLS 7HFKQRORJ\ 'UDZLQJ &%
DS21882D-page 24
(c) 2008 Microchip Technology Inc.
MCP6241/1R/1U/2/4
/HDG 3ODVWLF 'XDO ,Q/LQH 3 PLO %RG\ >3',3@
1RWH )RU WKH PRVW FXUUHQW SDFNDJH GUDZLQJV SOHDVH VHH WKH 0LFURFKLS 3DFNDJLQJ 6SHFLILFDWLRQ ORFDWHG DW KWWSZZZPLFURFKLSFRPSDFNDJLQJ
N
NOTE 1 E1
1
2 D
3 E A2
A
A1 e b1 b
L
c
eB
8QLWV 'LPHQVLRQ /LPLWV 1XPEHU RI 3LQV 3LWFK 7RS WR 6HDWLQJ 3ODQH 0ROGHG 3DFNDJH 7KLFNQHVV %DVH WR 6HDWLQJ 3ODQH 6KRXOGHU WR 6KRXOGHU :LGWK 0ROGHG 3DFNDJH :LGWK 2YHUDOO /HQJWK 7LS WR 6HDWLQJ 3ODQH /HDG 7KLFNQHVV 8SSHU /HDG :LGWK /RZHU /HDG :LGWK 2YHUDOO 5RZ 6SDFLQJ 1 H $ $ $ ( ( ' / F E E H% 0,1
,1&+(6 120 %6& 0$;
1RWHV 3LQ YLVXDO LQGH[ IHDWXUH PD\ YDU\ EXW PXVW EH ORFDWHG ZLWK WKH KDWFKHG DUHD 6LJQLILFDQW &KDUDFWHULVWLF 'LPHQVLRQV ' DQG ( GR QRW LQFOXGH PROG IODVK RU SURWUXVLRQV 0ROG IODVK RU SURWUXVLRQV VKDOO QRW H[FHHG SHU VLGH 'LPHQVLRQLQJ DQG WROHUDQFLQJ SHU $60( <0 %6& %DVLF 'LPHQVLRQ 7KHRUHWLFDOO\ H[DFW YDOXH VKRZQ ZLWKRXW WROHUDQFHV 0LFURFKLS 7HFKQRORJ\ 'UDZLQJ &%
(c) 2008 Microchip Technology Inc.
DS21882D-page 25
MCP6241/1R/1U/2/4
/HDG 3ODVWLF 6PDOO 2XWOLQH 61 1DUURZ PP %RG\ >62,&@
1RWH )RU WKH PRVW FXUUHQW SDFNDJH GUDZLQJV SOHDVH VHH WKH 0LFURFKLS 3DFNDJLQJ 6SHFLILFDWLRQ ORFDWHG DW KWWSZZZPLFURFKLSFRPSDFNDJLQJ
D e N
E E1
NOTE 1 1 2 3 b h c h
A
A2
A1
L L1
8QLWV 'LPHQVLRQ /LPLWV 1XPEHU RI 3LQV 3LWFK 2YHUDOO +HLJKW 0ROGHG 3DFNDJH 7KLFNQHVV 6WDQGRII 2YHUDOO :LGWK 0ROGHG 3DFNDJH :LGWK 2YHUDOO /HQJWK &KDPIHU RSWLRQDO )RRW /HQJWK )RRWSULQW )RRW $QJOH /HDG 7KLFNQHVV /HDG :LGWK 0ROG 'UDIW $QJOH 7RS 0ROG 'UDIW $QJOH %RWWRP 1 H $ $ $ ( ( ' K / / I F E D E 0,1
0,//,0(7(56 120 %6& %6& %6& %6& 5() 0$;
1RWHV 3LQ YLVXDO LQGH[ IHDWXUH PD\ YDU\ EXW PXVW EH ORFDWHG ZLWKLQ WKH KDWFKHG DUHD 6LJQLILFDQW &KDUDFWHULVWLF 'LPHQVLRQV ' DQG ( GR QRW LQFOXGH PROG IODVK RU SURWUXVLRQV 0ROG IODVK RU SURWUXVLRQV VKDOO QRW H[FHHG PP SHU VLGH 'LPHQVLRQLQJ DQG WROHUDQFLQJ SHU $60( <0 %6& %DVLF 'LPHQVLRQ 7KHRUHWLFDOO\ H[DFW YDOXH VKRZQ ZLWKRXW WROHUDQFHV 5() 5HIHUHQFH 'LPHQVLRQ XVXDOO\ ZLWKRXW WROHUDQFH IRU LQIRUPDWLRQ SXUSRVHV RQO\ 0LFURFKLS 7HFKQRORJ\ 'UDZLQJ &%
DS21882D-page 26
(c) 2008 Microchip Technology Inc.
MCP6241/1R/1U/2/4
/HDG 3ODVWLF 6PDOO 2XWOLQH 61 1DUURZ PP %RG\ >62,&@
1RWH )RU WKH PRVW FXUUHQW SDFNDJH GUDZLQJV SOHDVH VHH WKH 0LFURFKLS 3DFNDJLQJ 6SHFLILFDWLRQ ORFDWHG DW KWWSZZZPLFURFKLSFRPSDFNDJLQJ
(c) 2008 Microchip Technology Inc.
DS21882D-page 27
MCP6241/1R/1U/2/4
/HDG 3ODVWLF 'XDO ,Q/LQH 3 PLO %RG\ >3',3@
1RWH )RU WKH PRVW FXUUHQW SDFNDJH GUDZLQJV SOHDVH VHH WKH 0LFURFKLS 3DFNDJLQJ 6SHFLILFDWLRQ ORFDWHG DW KWWSZZZPLFURFKLSFRPSDFNDJLQJ
N
NOTE 1
E1
1
2
3 D E A2 L c
A
A1 b
b1 e
8QLWV 'LPHQVLRQ /LPLWV 1XPEHU RI 3LQV 3LWFK 7RS WR 6HDWLQJ 3ODQH 0ROGHG 3DFNDJH 7KLFNQHVV %DVH WR 6HDWLQJ 3ODQH 6KRXOGHU WR 6KRXOGHU :LGWK 0ROGHG 3DFNDJH :LGWK 2YHUDOO /HQJWK 7LS WR 6HDWLQJ 3ODQH /HDG 7KLFNQHVV 8SSHU /HDG :LGWK /RZHU /HDG :LGWK 2YHUDOO 5RZ 6SDFLQJ 1 H $ $ $ ( ( ' / F E E H% 0,1 ,1&+(6 120 %6& 0$;
eB
1RWHV 3LQ YLVXDO LQGH[ IHDWXUH PD\ YDU\ EXW PXVW EH ORFDWHG ZLWK WKH KDWFKHG DUHD 6LJQLILFDQW &KDUDFWHULVWLF 'LPHQVLRQV ' DQG ( GR QRW LQFOXGH PROG IODVK RU SURWUXVLRQV 0ROG IODVK RU SURWUXVLRQV VKDOO QRW H[FHHG SHU VLGH 'LPHQVLRQLQJ DQG WROHUDQFLQJ SHU $60( <0 %6& %DVLF 'LPHQVLRQ 7KHRUHWLFDOO\ H[DFW YDOXH VKRZQ ZLWKRXW WROHUDQFHV 0LFURFKLS 7HFKQRORJ\ 'UDZLQJ &%
DS21882D-page 28
(c) 2008 Microchip Technology Inc.
MCP6241/1R/1U/2/4
/HDG 3ODVWLF 6PDOO 2XWOLQH 6/ 1DUURZ PP %RG\ >62,&@
1RWH )RU WKH PRVW FXUUHQW SDFNDJH GUDZLQJV SOHDVH VHH WKH 0LFURFKLS 3DFNDJLQJ 6SHFLILFDWLRQ ORFDWHG DW KWWSZZZPLFURFKLSFRPSDFNDJLQJ
D N
E E1 NOTE 1 1 2 b 3 e h h A2 c
A
A1
L L1
8QLWV 'LPHQVLRQ /LPLWV 1XPEHU RI 3LQV 3LWFK 2YHUDOO +HLJKW 0ROGHG 3DFNDJH 7KLFNQHVV 6WDQGRII 2YHUDOO :LGWK 0ROGHG 3DFNDJH :LGWK 2YHUDOO /HQJWK &KDPIHU RSWLRQDO )RRW /HQJWK )RRWSULQW )RRW $QJOH /HDG 7KLFNQHVV /HDG :LGWK 0ROG 'UDIW $QJOH 7RS 0ROG 'UDIW $QJOH %RWWRP 1 H $ $ $ ( ( ' K / / I F E D E 0,1
0,//,0(7(56 120 %6& %6& %6& %6& 5() 0$;
1RWHV 3LQ YLVXDO LQGH[ IHDWXUH PD\ YDU\ EXW PXVW EH ORFDWHG ZLWKLQ WKH KDWFKHG DUHD 6LJQLILFDQW &KDUDFWHULVWLF 'LPHQVLRQV ' DQG ( GR QRW LQFOXGH PROG IODVK RU SURWUXVLRQV 0ROG IODVK RU SURWUXVLRQV VKDOO QRW H[FHHG PP SHU VLGH 'LPHQVLRQLQJ DQG WROHUDQFLQJ SHU $60( <0 %6& %DVLF 'LPHQVLRQ 7KHRUHWLFDOO\ H[DFW YDOXH VKRZQ ZLWKRXW WROHUDQFHV 5() 5HIHUHQFH 'LPHQVLRQ XVXDOO\ ZLWKRXW WROHUDQFH IRU LQIRUPDWLRQ SXUSRVHV RQO\ 0LFURFKLS 7HFKQRORJ\ 'UDZLQJ &%
(c) 2008 Microchip Technology Inc.
DS21882D-page 29
MCP6241/1R/1U/2/4
1RWH
)RU WKH PRVW FXUUHQW SDFNDJH GUDZLQJV SOHDVH VHH WKH 0LFURFKLS 3DFNDJLQJ 6SHFLILFDWLRQ ORFDWHG DW KWWSZZZPLFURFKLSFRPSDFNDJLQJ
DS21882D-page 30
(c) 2008 Microchip Technology Inc.
MCP6241/1R/1U/2/4
/HDG 3ODVWLF 7KLQ 6KULQN 6PDOO 2XWOLQH 67 PP %RG\ >76623@
1RWH )RU WKH PRVW FXUUHQW SDFNDJH GUDZLQJV SOHDVH VHH WKH 0LFURFKLS 3DFNDJLQJ 6SHFLILFDWLRQ ORFDWHG DW KWWSZZZPLFURFKLSFRPSDFNDJLQJ
D N
E E1
NOTE 1 12 e b A A2 c
A1
8QLWV 'LPHQVLRQ /LPLWV 1XPEHU RI 3LQV 3LWFK 2YHUDOO +HLJKW 0ROGHG 3DFNDJH 7KLFNQHVV 6WDQGRII 2YHUDOO :LGWK 0ROGHG 3DFNDJH :LGWK 0ROGHG 3DFNDJH /HQJWK )RRW /HQJWK )RRWSULQW )RRW $QJOH /HDG 7KLFNQHVV 1 H $ $ $ ( ( ' / / I F
L1
0,//,0(7(56 0,1 120 %6& %6& 5() 0$;
L
/HDG :LGWK E 1RWHV 3LQ YLVXDO LQGH[ IHDWXUH PD\ YDU\ EXW PXVW EH ORFDWHG ZLWKLQ WKH KDWFKHG DUHD 'LPHQVLRQV ' DQG ( GR QRW LQFOXGH PROG IODVK RU SURWUXVLRQV 0ROG IODVK RU SURWUXVLRQV VKDOO QRW H[FHHG PP SHU VLGH 'LPHQVLRQLQJ DQG WROHUDQFLQJ SHU $60( <0 %6& %DVLF 'LPHQVLRQ 7KHRUHWLFDOO\ H[DFW YDOXH VKRZQ ZLWKRXW WROHUDQFHV 5() 5HIHUHQFH 'LPHQVLRQ XVXDOO\ ZLWKRXW WROHUDQFH IRU LQIRUPDWLRQ SXUSRVHV RQO\ 0LFURFKLS 7HFKQRORJ\ 'UDZLQJ &%
(c) 2008 Microchip Technology Inc.
DS21882D-page 31
MCP6241/1R/1U/2/4
NOTES:
DS21882D-page 32
(c) 2008 Microchip Technology Inc.
MCP6241/1R/1U/2/4
APPENDIX A: REVISION HISTORY
Revision D (October 2008)
The following is the list of modifications: Changed Heading "Available Tools" to "Design Aids". 2. Design Aids: Name change for Mindi Simulator Tool. 3. Package Types: Added DFN to MCP6231 Device. 4. Absolute Maximum Ratings: Numerous changes in this section. 5. Updated notes to Section 1.0 "Electrical Characteristics". 6. Added Figure 2-19. 7. Numerous changes to Section 3.0 "Pin Descriptions". 8. Added Section 4.1.1 "Phase Reversal", Section 4.1.2 "Input Voltage and Current Limits", and Section 4.1.3 "Normal Operation". 9. Replaced Section 5.0 "Design Aids" with additional information. 10. Added 2x3 DFN package to Section 6.0 "Packaging Information" and updated Package Outline Drawings. 11. Added 2x3 DFN package to Product Identification System section. 1.
Revision C (March 2005)
The following is the list of modifications: 1. 2. Added the MCP6244 quad op amp. Re-compensated parts. Specifications that change are: Gain Bandwidth Product (BWP) and Phase Margin (PM) in AC Electrical Characteristics table. Corrected plots in Section 2.0 "Typical Performance Curves". Added Section 3.0 "Pin Descriptions". Added new SC-70 package markings. Added PDIP-14, SOIC-14, and TSSOP-14 packages and corrected package marking information (Section 6.0 "Packaging Information"). Added Appendix A: "Revision History".
3. 4. 5.
6.
Revision B (August 2004)
Undocumented changes.
Revision A (March 2004)
* Original Release of this Document.
(c) 2008 Microchip Technology Inc.
DS21882D-page 33
MCP6241/1R/1U/2/4
NOTES:
DS21882D-page 34
(c) 2008 Microchip Technology Inc.
MCP6241/1R/1U/2/4
PRODUCT IDENTIFICATION SYSTEM
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office. PART NO. Device X Tape and Reel and/or Alternate Pinout
MCP6241: MCP6241T: MCP6241RT: MCP6241UT: MCP6242: MCP6242T: MCP6244: MCP6244T:
-X
/XX
Examples: a) b) c) d) e) Extended Temp., 8LD SOIC package. MCP6241-E/MS: Extended Temp., 8LD MSOP package. MCP6241-E/P: Extended Temp., 8LD PDIP package. MCP6241-E/MC: Extended Temp., 8LD DFN package. MCP6241RT-E/OT: Tape and Reel, Extended Temp., 5LD SOT-23 package MCP6241UT-E/OT: Tape and Reel, Extended Temp., 5LD SOT-23 package. MCP6241UT-E/LT: Tape and Reel, Extended Temp., 5LD SC-70 package. MCP6242-E/SN: MCP6242-E/MS: MCP6242-E/P: MCP6242T-E/SN: Extended Temp., 8LD SOIC package. Extended Temp., 8LD MSOP package. Extended Temp., 8LD PDIP package. Tape and Reel, Extended Temp., 8LD SOIC package. Extended Temp., 14LD PDIP package. Extended Temp., 14LD SOIC package. Extended Temp., 14LD TSSOP package. Tape and Reel, Extended Temp., 14LD SOIC package. Tape and Reel, Extended Temp., 14LD TSSOP package. MCP6241-E/SN:
Temperature Package Range
Device:
Single Op Amp (MSOP, PDIP, SOIC) Single Op Amp (Tape and Reel) (MSOP, SOIC, SOT-23) Single Op Amp (Tape and Reel) (SOT-23) Single Op Amp (Tape and Reel) (SC-70, SOT-23) Dual Op Amp Dual Op Amp (Tape and Reel) (MSOP, SOIC) Quad Op Amp Quad Op Amp (Tape and Reel) (SOIC, TSSOP)
f)
g)
Temperature Range:
E
= -40 C to +125 C
Package:
LT = Plastic Package (SC-70), 5-lead (MCP6241U only) MC = Plastic Dual Flat, No Lead (DFN), 8-lead, (MCP6241 only) MS = Plastic Micro Small Outline (MSOP), 8-lead P = Plastic DIP (300 mil Body), 8-lead, 14-lead OT = Plastic Small Outline Transistor (SOT-23), 5-lead (MCP6241, MCP6241R, MCP6241U) SN = Plastic SOIC (150 mil Body), 8-lead SL = Plastic SOIC (150 mil Body), 14-lead ST = Plastic TSSOP (4.4 mil Body), 14-lead
a) b) c) d)
a) b) c)
MCP6244-E/P: MCP6244-E/SL: MCP6244-E/ST:
d)
MCP6244T-E/SL:
e)
MCP6244T-E/ST:
(c) 2008 Microchip Technology Inc.
DS21882D-page 35
MCP6241/1R/1U/2/4
NOTES:
DS21882D-page 36
(c) 2008 Microchip Technology Inc.
Note the following details of the code protection feature on Microchip devices: * * Microchip products meet the specification contained in their particular Microchip Data Sheet. Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions. There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property. Microchip is willing to work with the customer who is concerned about the integrity of their code. Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."
*
* *
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.
Trademarks The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, rfPIC, SmartShunt and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. FilterLab, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, In-Circuit Serial Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, PICkit, PICDEM, PICDEM.net, PICtail, PIC32 logo, PowerCal, PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB, Select Mode, Total Endurance, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. SQTP is a service mark of Microchip Technology Incorporated in the U.S.A. All other trademarks mentioned herein are property of their respective companies. (c) 2008, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved. Printed on recycled paper.
Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC(R) MCUs and dsPIC(R) DSCs, KEELOQ(R) code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.
(c) 2008 Microchip Technology Inc.
DS21882D-page 37
WORLDWIDE SALES AND SERVICE
AMERICAS
Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://support.microchip.com Web Address: www.microchip.com Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455 Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088 Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075 Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924 Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260 Kokomo Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387 Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445 Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509
ASIA/PACIFIC
Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755 China - Beijing Tel: 86-10-8528-2100 Fax: 86-10-8528-2104 China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889 China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431 China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470 China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205 China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066 China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393 China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760 China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118 China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130 China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256 China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049
ASIA/PACIFIC
India - Bangalore Tel: 91-80-4182-8400 Fax: 91-80-4182-8422 India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632 India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513 Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122 Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302 Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934 Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859 Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068 Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069 Singapore Tel: 65-6334-8870 Fax: 65-6334-8850 Taiwan - Hsin Chu Tel: 886-3-572-9526 Fax: 886-3-572-6459 Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-536-4803 Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102 Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350
EUROPE
Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829 France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44 Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781 Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340 Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91 UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820
01/02/08
DS21882D-page 38
(c) 2008 Microchip Technology Inc.


▲Up To Search▲   

 
Price & Availability of MCP6241T-EMC

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X